Design of an R-134a Loop for Subcritical and Supercritical Forced-Convection Heat Transfer Studies
International Conference on the Future of Heavy Water Reactors - 2011 October 02-05


Presented at:
International Conference on the Future of Heavy Water Reactors
2011 October 02-05
Location:
Ottawa, Canada
Session Title:
Thermalhydraulics (II)

Authors:
M. Balouch (Carleton University)
M.I. Yaras (Carleton University)
  

Abstract

The R-134a test loop is a forced-flow experimental facility for the study of heat transfer properties of R-134a under subcritical and supercritical thermodynamic conditions. The loop is designed to operate with pressures as high as 6 MPa and temperatures up to 140 °C. The intended mass flux is in the range of 500-6000 kg/m2s for the experiments with subcritical thermodynamic states and 500-4000kg/m2s for supercritical conditions. The loop has been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a 7-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test section geometry. The design of the loop allows for easy reconfiguration of the test-section orientation relative to the gravitational direction and adjustment to the length of the test section.

Individual Conference-Paper Copies (Electronic Where Available):

  • For CNS members, the first 5 copies per calendar year are free, and additional copies are $10 each.
  • For non-members, the price is $25 for the first Conference-paper copy in a request, and $10 each for additional copies of papers in the same conference and in the same request.
  • Contact the CNS office to order reprints.