NUMERICAL INVESTIGATIONS OF COOLING HEAT TRANSFER OF SUPERCRITICAL WATER
The 5th International Symposium on SuperCritical Water-cooled Reactors - 2011 March 13-16


Presented at:
The 5th International Symposium on SuperCritical Water-cooled Reactors
2011 March 13-16
Location:
Vancouver,Canada
Session Title:
Numerical Modelling

Authors:
Heiko Herbell (EnBW Kernkraft GmbH)
Joerg Starflinger (University of Stuttgart)
Thomas Schulenberg (Karlsruhe Institute of Technology)
  

Abstract

The re-heater and the start-up system are the only basically new components in the balance of plant of the High Performance Light Water Reactor (HPLWR). Inside the tubes of the re-heater, supercritical fluid undergoes pseudo-condensing. CFD simulations have been performed in order to determine the heat transfer coefficient on the tube side more accurately. Numerical results are compared with Bruch’s CO2-experiment [12] for validation. The results illustrate the influence of buoyancy forces on the laminar turbulent transition for vertical downward flows. A simple heat transfer correlation [17] has been proposed for re-heater design, which is compared here with numerical simulations. Fluctuating density stratification is obtained for a horizontal layout which is similar to a Kelvin-Helmholtz instability.

Individual Conference-Paper Copies (Electronic Where Available):

  • For CNS members, the first 5 copies per calendar year are free, and additional copies are $10 each.
  • For non-members, the price is $25 for the first Conference-paper copy in a request, and $10 each for additional copies of papers in the same conference and in the same request.
  • Contact the CNS office to order reprints.