Energy for Tomorrows World:
A Summary of Conventional and Renewable Options

Adam McLean

June 4, 2001
Outline of Presentation

– Energy use: Is it really so bad?
– What Else is Wrong?
– Nonrenewable Energy Sources
– What is a Renewable Energy Source?
– Renewable Energy Sources
– Under Development
– What are the Barriers?
– An Uncertain Future
– Conclusions
Energy Use: Is it Really so Bad?

UN Population Projections

Population Growth Rate

World Resources Institute

Average Annual % Change

Fuel & Fuel Channel Analysis Department
What Else is Wrong?

- Today, the global average surface temperature is about 15°C. This is 33°C warmer than the average surface temperature of the moon, which is about the same distance from the Sun as the Earth. The moon, of course, does not have an atmosphere, and therefore no greenhouse gases to trap extra heat.

Concentration increases since 1750:
- Carbon Dioxide: 280 ppm 360 ppm (29%)
- Nitrous Oxides: 280 ppb 360 ppb (11%)
- Methane: 0.70 ppm - 1.70 ppm (143%)
Nonrenewable Energy Sources: Oil

Benefits:
- Wide range of applications for proven technology
- Tax advantage for investors
- Easy to transport and convert to electricity

Disadvantages:
- Direct environmental damage caused by oil spills
- Contribution to global air pollution
- Peak production is expected very soon ~2015!
- Reserves will run out in year ~2100
- During the 1970 Oil Crisis, America imported 24% of its oil dependency
- America currently imports 51% of its oil demand
- Reference case projection for 2010 is 60%, $100 billion per year outflow
Nonrenewable Energy Sources: Natural Gas

• **Advantages:**
 - 1/2 CO₂ of coal, 3/4 CO₂ of oil production
 - Easy to transport
 - Versatile fuel which can be used for space and water heating, process heat for industry, cooking, transportation and electricity generation
 - Plants can be quickly turned on and off to supply ‘peak’ power demand
 - Co-generation plants up to 50% efficient

• **Disadvantages:**
 - Cost is highly dependant on price of fuel
 - Generally more expensive than coal
 - Peak production is expected in ~2010
 - Reserves will run out in year ~2150
Nonrenewable Energy Sources: Coal

• “When it rains in China's coal country, soot rubs off blackened tree trunks like ink.”

• Advantages:
 – far more plentiful than gas and oil
 – safe, proven technology
 – cheap power for a great number of people

• Disadvantages:
 – huge contribution to global pollution and greenhouse gas emission.

• Low Emission Coal Technology
 – Fluidized Bed Combustion
 » Burn coal in pulverized form, suspended on mixture of jets
 » Removes pollutants inside the boiler (no scrubber required)
 » Reduces SO2 by 90-95%
 » Reduces Nox by 90+%
 – Gasification Combined Cycle
 » coal turned into gas and cleaned before burning
 » gas burned in turbine to create electricity
 » Exhaust from turbine hot enough to boil water -> combined cycle
 » 95-99% impurities can be removed
Nonrenewable Energy Sources: Nuclear Fission

- **Advantages:**
 - Very high capacity, continuous source for baseload power
 - Proven technology
 - Most regulated and inspected industry anywhere
 - Technology also used for numerous medical, agriculture, etc. applications

- **Disadvantages:**
 - Nuclear Waste… from fuel and decommissioning
 - High initial capital cost
 - Lack of public knowledge and acceptance

Energy Conversion:

Typical Heat Values of Various Fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Heat Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown coal</td>
<td>9.7 MJ/kg</td>
</tr>
<tr>
<td>Firewood</td>
<td>16 MJ/kg</td>
</tr>
<tr>
<td>Black coal</td>
<td>24-30 MJ/kg</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>39 MJ/m³</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>45-46 MJ/kg</td>
</tr>
<tr>
<td>Uranium (light water reactor)</td>
<td>500,000 MJ/kg</td>
</tr>
<tr>
<td>(MJ = Megajoules)</td>
<td></td>
</tr>
</tbody>
</table>

Fuel & Fuel Channel Analysis Department
Prospects for Renewable Energy Sources

Technical Potential of Renewable Resources

*(After W. Hafele, *ENERGY IN A FINITE WORLD—A Global Systems Analysis*, Ballinger (1981)*)

<table>
<thead>
<tr>
<th>Type</th>
<th>Annual Energy Potential (billion bce/y)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>30</td>
<td>Requires cultivation of virtually all of the productive land in the world</td>
</tr>
<tr>
<td>Hydropower</td>
<td>15</td>
<td>A high quality product, equal to 3 times as much fuel. Includes minor potential from glaciers</td>
</tr>
<tr>
<td>Wind</td>
<td>15</td>
<td>High quality energy but utilization must deal with difficulties of energy storage</td>
</tr>
<tr>
<td>Waves & Ocean Currents</td>
<td>0.03</td>
<td>Minor quantities available, but they do not add up to anything significant</td>
</tr>
<tr>
<td>OTEC</td>
<td>5</td>
<td>Potential is greater if ocean heat can be diverted on a gigantic scale. Still speculative.</td>
</tr>
<tr>
<td>Geothermal</td>
<td>10</td>
<td>Much more stored heat is available for “mining” but technology is not available</td>
</tr>
<tr>
<td>Tidal</td>
<td>0.2</td>
<td>Very localized potential</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
Renewable Energy Sources: Wind

Advantages:
- Continuous but variable source
- Proven technology in Europe (Denmark sells 1/2 of total world installed wind capacity of 4500MW/year)
- Total installed wind capacity >21,000MW
- Wind turbines now are 50kW - 3MW in size
- Built to last >20 years
- Can be land or water based
- Highly distributed production
- Actually blades kill very few birds...

Disadvantages:
- Large land area required
- Operate at only 15-25% capacity
- Storage is absolutely required
- Maintenance is difficult and $$$
- Loud (>100 dB) near base
Renewable Energy Sources: Biomass

- **Advantages:**
 - Low regeneration time (wood - 7 years, biofuels - 1-3 months)
 - Small capital cost
 - Small scale (50-100MW) is practical for developing countries (15% of world use, 35% of developing energy)
 - Continuous operation for baseload power
 - Creation of jobs in agriculture
 - Biomass Integrated Gasifyer/Fuel Cell (BIG/FC) system releases virtually no pollution, 80+% efficiency

- **Disadvantages:**
 - Particulate and Carbon Monoxide pollution for current generation
 - Land-use intensive
Renewable Energy Sources: Hydro

- **Hydroelectric**
 - Medium to large installations
 - Dependant on rainfall

- **Tidal**
 - Twice a day
 - Very limited locations

- **Wave**
 - Continuous but variable source
 - Limited areas of applicability
 - Might interrupt normal seashore operations

- **Ocean Thermal Energy Conversion**
 - 2% theoretical efficiency
 - 10^7MW power available
 - Closed or open cycle plants
 - Continuous source
Renewable Energy Sources: Solar

- **Advantages**
 - Vast amount of untapped energy potential
 - The amount of solar energy reaching Earth each day could supply our power for 1 year
 - Uses include heating and photovoltaics
 - Individual cells have approached 25% in conversion efficiency

- **Disadvantages**
 - Large initial capital investment
 - Capacity highly dependant on location
 - Due to contact losses and non-productive surface areas, large solar array efficiency has only reached 11%
 - 1kW at 11% efficiency requires a collecting area of 3,700 cm²
 - Exotic chemicals required for high efficiency (eg. Pn-GaAs, GaSb, nip-Ga-In)
 - Few employment opportunities
Renewable Energy Sources: Geothermal

- Currently 8,200 MW installed capacity in 21 countries (mostly developing)

- Advantages:
 - Provides clean, safe energy using little land
 - Renewable and sustainable
 - Generates continuous, reliable baseload power
 - Modular development and remote power applications

- Disadvantages:
 - Only available in specific locations around the globe
Renewable Energy Sources: Nuclear Fusion

- Energy source of the 21st century
- Still about 40-50 years before commercial fusion reactors are in operation
- 2 current projects intend to show energy ‘breakeven’ and nuclear ignition conditions
 - National Ignition Facility (NIF) based on inertial confinement fusion
 - International Thermonuclear Experimental Reactor (ITER) based on magnetic confinement fusion
- A 5,000MW Deuterium fusion power plant would require 76,300 m³ of water for fuel per year
Energy Storage

- Energy carriers, not producers
- Batteries:
 - Acres of batteries charged during low demand periods
 - Designed for load leveling
 - 1 acre could store 400MWh of energy, deliver 40MW for 10 hours
 - Batteries require environmentally damaging chemicals
- Pumped hydro
 - Advantage of 64% efficiency
 - Disadvantage of limited locations for use
- Flywheels
 - Fused Silica flywheel has 25 times energy storage per kg than lead-acid batteries
- Hydrogen
 - Very high energy density storage per kg
 - H must be separated from H2O
 - Very energy intensive process
- Compressed air
 - Must cool air as it’s compresses
 - Highly pressurized containment vessels are a safety concern
Barriers to Use of Renewable Source

- Legislative Barrier: The need is not seen or understood. Continuous short term view. Will an alternative provide enough jobs, be affordable?

- NIMBY (Not In My Back Yard) Barrier: Many things are now unacceptable to the public.

- Ignorance Barrier: The public doesn’t understand the need to invest in alternative energy sources now.

- Industry Barrier: Economics of alternative energy are not well understood, can industry make a profit? Taxing fossil fuel sources would subsidize renewables but this may never happen. Limited experience.

- Capital Cost Barrier: High capital cost of equipment. Without government subsidies, some facilities just can’t get built. Tax breaks and low interest loans will be needed.

- Uncertainty Barrier: Will new technology come along and make obsolete what has been done?

- Environmental Barrier: False perceptions of risk to replace conventional energy sources. Lack of a single standard governing the definition of ‘green’. Difficulty identifying and quantifying benefits of green practices.

- Energy Storage Barrier: All forms of alternative energy require efficient and reliable energy storage to compensate for low duty cycle
Summary

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Solar Thermal</th>
<th>PV</th>
<th>Hydro</th>
<th>Wind</th>
<th>OTEC</th>
<th>Tidal</th>
<th>GEO</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>Large</td>
<td>Large</td>
<td>Enormous</td>
<td>Moderate</td>
<td>Enormous+</td>
<td>Enormous</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Small</td>
<td>Unknown</td>
<td>Negligible</td>
<td>Small</td>
<td>Moderate</td>
</tr>
<tr>
<td>Efficiency</td>
<td>15%</td>
<td>5--10%</td>
<td>80%</td>
<td>42%</td>
<td>7% +</td>
<td>25%</td>
<td>100%</td>
<td>25%</td>
</tr>
<tr>
<td>Renewable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Erratic</td>
<td>Yes</td>
<td>Yes</td>
<td>NO</td>
<td>Maybe</td>
</tr>
<tr>
<td>Storage</td>
<td>Not Needed</td>
<td>Unclear</td>
<td>Built-IN</td>
<td>Essential</td>
<td>Not Needed</td>
<td>Unclear</td>
<td>Not Needed</td>
<td>Not Needed</td>
</tr>
<tr>
<td>Pollution</td>
<td>None</td>
<td>Waste Heat</td>
<td>None</td>
<td>Visual</td>
<td>None</td>
<td>None</td>
<td>Steam Plumes</td>
<td>Particulates; CO</td>
</tr>
<tr>
<td>Levelized Costs</td>
<td>25 cents KWH</td>
<td>16 cents KWH</td>
<td>4 cents KWH</td>
<td>4.5 cents KWH</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Low</td>
<td>Unknown</td>
</tr>
<tr>
<td>Environmental Impact</td>
<td>Moderate</td>
<td>Large</td>
<td>Enormous</td>
<td>Small</td>
<td>Unknown</td>
<td>Outrageous</td>
<td>Small</td>
<td>Moderate</td>
</tr>
<tr>
<td>Large Scale</td>
<td>Too Expensive</td>
<td>Possible - Expensive</td>
<td>Proven already</td>
<td>Very Possible</td>
<td>The Solution</td>
<td>Discrete Locations</td>
<td>Discrete Locations</td>
<td>Net Energy Gain?</td>
</tr>
<tr>
<td>Small Scale</td>
<td>NO</td>
<td>Difficult</td>
<td>Low Head --> Legal</td>
<td>Definitely</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>Absolutely</td>
</tr>
<tr>
<td>Unit Capacity</td>
<td>1000 MW</td>
<td>Depends on Acreage</td>
<td>2000-6000 MW</td>
<td>Highly Variable</td>
<td>As large as you need</td>
<td>250 MW</td>
<td>1000 MW</td>
<td>50-100 MW</td>
</tr>
<tr>
<td>Employment</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Lots to build it</td>
<td>Some</td>
<td>Few</td>
</tr>
</tbody>
</table>

Note: OTEC = Ocean Thermal Energy Conversion, GEO = Geothermal Energy.
Toward the Future...

• Adam’s Predictions...
 – Oil and Gas will very quickly become very expensive
 – More coal use but very slow acceptance of new burning technologies
 – More nuclear!
 – More renewables in the form of wind (watch for wind turbines) and biomass generation
 – Solar will remain a highly specialized production method
To Conclude...

• When your electricity bill asks ‘Would you agree to paying a x cent premium to support clean energy production?’ what will you say?

• Thank you for your attendance :)