Tritium Handling Technologies

Canadian Workshop on Fusion Energy Science and Technology
Oshawa, 2013 August

Presented by Hugh Boniface
Outline

- Introduction
- Tritium properties
 - Nuclear, Physical, Chemical, Biological
- Tritium Facts
 - Abundance, Activity, Toxicity
- Handling, measuring
 - Elemental, Water
- Processing
 - Recovery, Extraction, Enrichment, Storage/disposal
Tritium and Fusion: Why?

D-T fusion is attractive because:

• It produces a lot of energy (17.7 MeV)
• It has a relatively low activation energy
• It produces neutrons to breed more T
Tritium Primer - 1

- **Protium (normal hydrogen)**
 - One proton
 - Most abundant element

- **Deuterium (heavy hydrogen)**
 - One proton + one neutron
 - 1 part in 6000 on Earth

- **Tritium (extra heavy hydrogen)**
 - One proton + two neutrons
 - Unstable, radioactive
 - Produced by deuterium neutron capture
 - <1 in 10^{16} on Earth
Beta decay:

\[{\text{^3}_1H} \rightarrow {\text{^3}_2He^+} + e^- + {\overline{\nu}_e} \]

- Beta decay: 18 keV total energy, 5.7 keV (av.) electron
- 12.3 year half-life
• Mass: 6.032 g/mol (T_2)
• Gas at normal T, P
• BP: 25 K (-248°C)

<table>
<thead>
<tr>
<th></th>
<th>Protium (H_2)</th>
<th>Deuterium (D_2)</th>
<th>Tritium (T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular mass (g/mol)</td>
<td>2.016</td>
<td>4.028</td>
<td>6.032</td>
</tr>
<tr>
<td>Boiling point (K)</td>
<td>20.4</td>
<td>23.7</td>
<td>25.0</td>
</tr>
<tr>
<td>Melting point (K)</td>
<td>14.0</td>
<td>18.7</td>
<td>20.6</td>
</tr>
<tr>
<td>Critical point (K)</td>
<td>33.2</td>
<td>38.4</td>
<td>40.6</td>
</tr>
<tr>
<td>NMR frequency (MHz)</td>
<td>100.5</td>
<td>15.36</td>
<td>104.7</td>
</tr>
</tbody>
</table>
Tritium undergoes the same chemical reactions as protium and deuterium:

- Burns in air/oxygen to form water (T_2O)
- Adsorbs/dissociates on surfaces (e.g. Pt-T)
- Forms hydrides with metals (e.g. TiT$_2$)
- Forms hydrocarbons (OBT)

Because it is the same element, chemical separations of T from H, D are difficult.
Tritium Primer - 5

- Tritium follows hydrogen in the human body
- As for H\textsubscript{2}, T\textsubscript{2} gas is not significantly absorbed into the body (low solubility in fluids)
- As water:
 - It is absorbed through all membranes (lungs, skin, digestive system)
 - Follows all metabolic paths
 - Is not significantly sequestered
 - Is excreted as water etc.
- General damage to cell constituents from direct radiation and free radicals
Primary concern is radio-toxicity
- ~10 day half-life in human body (as water)
- T_2O is about 10,000 times more toxic than T_2
- ~1 mSv dose from 0.1 mL of 15 Ci/kg water

T_2 is converted to T_2O in the environment (slowly in air, quickly in soil), so T_2 has 5-10% of effect of T_2O local to release

Canadian drinking water limit: 7000 Bq/L (190 pCi/mL), about ten times US limit.
• T is produced in atmosphere (cosmic rays etc. – about 200 g/a), but current inventory in troposphere and hydrosphere is mainly from H-bomb testing (about 500-600 kg released up to 1962)
• Most surface waters in Ontario have 1-10 Bq/L (0.03-0.3 pCi/mL)
Tritium Facts - 3

- ~10,000 Ci per gram of T_2
- 1 Ci/kg water has ~0.3 ppm T (mol)
- Get ~35 µW/Ci from decay heat (only beta)
- Beta radiation range:
 - In air – 6 mm
 - In water – 0.005 mm
- Tritiated water is corrosive from radiolysis, which produces various active compounds e.g. H_2O_2, $H\cdot$ and O_2
• Low or high concentrations:
 • Sample
 • Convert all to water
 • Add scintillation cocktail and count

(Typical sensitivity: <1 Bq/L, count for hours)
- High concentrations:
 - Draw sample
 - Convert all to gas
 - Measure radiation (ion chamber)

(Typical sensitivity: 40 kBq/m3 with 1L chamber)
Tritium Handling - 1

- In elemental form:
 - Best for high concentrations (minimize toxicity)
 - Double barriers (gloveboxes)
 - Forms stable hydrides (e.g. titanium sponge)

\[T_2 \text{ from CDS} \]
\[N_2 \text{ supply} \]
\[\text{Blower} \]
\[\text{Metering Tank} \]
\[\text{N}_2 \text{ Glove Box} \]
\[\text{U-bed} \]
\[\text{Ti-beds} \]
\[\text{Vacuum Pumps} \]
\[\text{Air Purged Box} \]
\[\text{Gas Chromatograph} \]
\[\text{GB Clean-up} \]
\[\text{To Stack} \]
\[\text{Blower} \]
Tritium Handling - 2

- In water form:
 - Best for low concentrations (simple equipment)
 - Simple barriers (PPE)
 - Readily condensed/adsorbed (e.g. mol sieves)
Tritium Processing - 1

- Chemical conversion:
 - Oxidation OBT or element to water (catalyst)
 - Reduction of water to element (e.g. electrolysis)

Trickle-bed recombiner
Gas-phase recombiner
E-cell, membranes and catalysts
- **Separation:**
 - Hydrogen-water exchange (Pt catalyst) where natural separation factor favors heavy isotope in the water
 - Distillation of hydrogen (cryogenic) or water (vacuum)
 - Adsorption of hydrogen (e.g. palladium)
Example: Tritium recovery system

- Dry air feed to tritium areas
- Collect all exhaust air
- Recombine elemental T (and OBT) to water
- Adsorb water from air, recover liquid water
- Feed water to combined electrolysis and catalytic exchange process (CECE)
- Release hydrogen free from T
- Send T in hydrogen to cryogenic distillation
- Return concentrated tritium to process or store it in U-bed.
Tritium Processing System Diagram

- Supply Fans
- Dryer
- Exhaust Fans
- Gas-phase Recombiner
- Operations
- Stack
- Zero-T Hydrogen
- Natural Water
- Low-T Hydrogen
- Cryogenic Distillation System
- He Refrigerator
- T2 Handling System
- Oxygen
- High-T Hydrogen
- Water + T
- Catalyst Exchange Columns
- Electrolysis Cells
- DT / T₂
- Air
- Natural Water
- Water + T
AECL’s Chalk River Laboratory is the major centre for tritium expertise in Canada with:

- Tritium Facility licensed for 1 million Curies
- Facilities for handling and dispensing pure tritium
- Facilities and personnel engaged in active R&D on tritium handling, measurement, use, separations, control, transport, reactions, storage and biological effects
- Tritium models
AECL’s R&D products:

- Tritium power sources
- Processes for tritium removal
- Catalysts for tritium reactions and separations
- Certified tritium standards
- Tritium-resistant materials and equipment